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Abstract: With conformational^ homogenous alicyclic hydrocarbons, a linear deshielding of up to 0.006 ppm/K with in­
creasing temperature is observed. In contrast upfield shifts as large as -0.02 ppm/K are found with functionally substituted 
carbon atoms. These findings are compared with solvent dependences and discussed mainly on the basis of square electrical 
field effects. In sterically inhomogenous compounds carbon atoms which are involved in gauche/trans equilibria are charac­
terized by upfield shifts nonlinear with temperature. The temperature dependence can be used for stereochemical and 13C 
NMR spectroscopic assignments, as illustrated with n-pentylcyclohexane. The methyl carbon shifts in «-butane are comput­
er simulated with gauche/trans differences of 300 to 700 cal/mol (enthalpy) and of 2.5-4.7 ppm (shifts). Other hydrocar­
bons show shift dependences for which empirical parameters are given, reflecting the number of gauche conformations oc­
curring. 

Although chemical shifts are known to be intrinsically 
temperature dependent,2 there is a paucity of pertinent data 
on 13C NMR shieldings.3 For many molecules carbon shifts 
can be determined more accurately than proton shifts; 

knowledge of their temperature dependence is a prerequi­
site particularly in investigations of equilibria and rates of 
chemical reactions which are fast on the NMR time scale. 
Besides holding promise for practical applications including 
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Table I. ' 3C Shift Temperature Gradients for Conformationally 
Homogenous Hydrocarbons*6 

O' 
L 1 CH; 

CH, 
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Table II. 13C Shift Temperature Gradients" for Polar Compounds 

C - B r 4 

- 1 1 8 ± 4 * 

Me-CH 2 -BrC 
- 1 7 - 1 2 2 

±1 ±3 

M e - I 
- 2 0 0 ± 1(X 

Me-CH2-Br<? 
- 7 - 7 0 
±3 ±4 

I 
I 

M e 3 - C - C - M e / 
19 - 1 5 - 1 9 4 15 
±3 ±5 ±9 ±3 

"See footnotes to Table I. *>5 mol % in pentane. cNeat liquid.d3 
mol % in pentane. «40 wt % in a 1:1 mixture of CFCl3 and CH2O2. 

do- CH1—CH,—CH, 

Cycloheptane 
Cyclooctane 

40 
30 

"In 10"4 ppm/K units vs. Me4Si (AS M e^ s i =0); positive sign de­
notes downfield shifts with increasing temperature; standard de­
viation + 2 to ±6 [IO"4 ppm/K]. Measured as neat liquids with added 
lock and reference compounds (see Experimental Section). 

13C signal assignments, a study of the temperature depen­
dence of carbon shifts could provide data for the under­
standing of shielding mechanisms. 

As internal reference throughout this investigation, tetra-
methylsilane (Me4Si) is used, which below 300 K shows a 
deshielding of AS/AT = 0.012 ppm/K with increasing tem­
perature, as recently found4 by comparison with tempera­
ture independent5 N M R frequencies. In a series of confor­
mationally homogenous and fairly nonpolar hydrocarbons, 
a strictly linear deshielding (correlation coefficient r > 
0.99) with increasing temperature is observed for all carbon 
signals6 (Table I). The values (as compared with Me4Si 
with Ad/AT = 0) range between (-0.001 ± 0.0005) and 
(0.006 ± 0.0005) ppm/K and show no regular trends except 
being smallest for methyl carbons. The observed deshield­
ing could be connected to an effect of bond length incre­
ase,73 or, more likely for unpolar single bonds, to a decreas­
ing mean excitation energy A£,8 which could enhance the 
paramagnetic o-p term. 

The interpretation of carbon shifts in polar compounds is 
particularly complicated by the change in macroscopic 
properties of the solution with temperature. The deshielding 
of a carbon nucleus by a fluctuating dipole can be approxi­
mated on the basis of square electrical field effects.9,10 

A<5<E2) ~ 3PCxIxr~6 
(D 

The distance r between the observed carbon and the dipole 
center as well as the first ionization potential Ix of the het-
eroatom Can be regarded as approximately solvent indepen­
dent. The change of C-X bond polarizability with the di­
electric constant e of the solvent can be described by1 '-12 

Pcx = 1 - const(0.333 - k{) 
t - 1 

6 + 2 
(2) 

The expected deshielding with increasing solvent polarity, 
linear in (« - l) /(« + 2), has in fact been observed13 for the 
functional carbon shifts (C„) of nonsymmetrical molecules 
(anisotropy factor k\ < 0.333). It should be noted, that a 
very similar function, like (t - l ) / (2e + I) ,1 4 would ac­
count for the increasing polarity of a C a - X bond with «, 
which would lead to deshielding by lowering the electron 
density at C a . 

Measurements with ethyl bromide in neat liquid as well 
as in pentane, for which solvents e is known at different 
temperatures,15 show indeed the predicted linear depen­
dence of C a shifts on (« - !)/(« + 2 ) 1 3 (Figure 1). 

TMS 

200 300 T - - [K] 
Figure 1. 13C0 shift dependence on temperature T and on e units for: 
(a) ethyl bromide, 3 mol % in pentane; (b) ethyl bromide, neat; and (c) 
carbon tetrabromide, 5 mol % in pentane. 

There is, however, a major contradiction to results of 
measurements of ethyl bromide carbon shifts in solvents of 
varying dielectric constants, which have been extrapolated 
to zero concentration of the solute.13 Here we have observed 
for C a a sensitivity of 6 ppm per (e - l)/(< + 2) unit (= 
eu), while the slopes of the temperature plots (Figure 1) are 
13.2 ppm/eu in neat ethyl bromide and 14 ppm/eu in pen­
tane. In addition, carbon tetrabromide shifts depend even 
more strongly on temperature (Figure 1, -0 .012 ppm/K), 
although this spherically symmetrical molecule (Ia = 
0.333) should be rather insensitive to solvent e changes. 
There must be another factor besides solvent effects which 
contributes substantially to the observed C a shielding with 
increasing temperature. An increasing population of higher 
vibrational ground states will lenghthen the C a -X bond to 
some extent, which in view of the square electric field effect 
dependence on r~6 (eq 1) will produce an upfield shift. This 
effect is dominating at Ca and levels off at Cp by the coun­
teracting deshielding observed for hydrocarbons. The latter 
effect becomes dominant at carbon atoms remote to the 
C a - X substitution site (Table II). 

The temperature dependence of 13C signals of com­
pounds undergoing rapid chemical exchange can be used as 
a sensitive probe for the equilibrium, provided one can esti­
mate the chemical shift temperature dependence of the par­
ticipating species. With conformationally inhomogenous 
hydrocarbons, we find, as usual, linear deshielding with in-
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Table III. Temperature Dependence of ' 3C Shifts for Linear Alkanes12 

Cl C2 

Zy S A B Zy S A B Zy S 

C3 

A B S 7 S 

C4 

A B 

rc-Butane 
n-Pentane 
H-Hexane 
n-Heptane 

55 
45 
45 
40 

7.9 
5.8 
6.7 
6.6 

1.119 
1.376 
1.1335 
1.134 

20 
40 
40 
40 

2.6 
3.7 
3.4 
3.6 

1.395 
1.351 
1.356 
1.355 

12 
45 
45 

1.0 
3.2 
2.9 

1.540 
1.500 
1.503 2 95 6.0 1.453 

aS = dS/dFat 230 K in 10" ppm deg units; for other explanations, see text. 

05 
ppm 

TMS 

CH3CH2CH2CH3 

- -CH 

150 200 250 TfK] 

Figure 2. Temperature dependence of 13C shifts in n-butane. Experi­
mental points and computer-simulated curve (solid line). For measur­
ing conditions see footnotes to Table I and Experimental Section. 

creasing temperature for all carbon atoms not involved in 
rotational equilibria, but a marked and nonlinear upfield 
shift for those carbon atoms which participate in gauche/ 
trans conformational equilibria. At elevated temperature 
the gauche conformations become more populated, leading 
to upfield shifts particularly for those carbons changing 
from an antiperiplanar to a syn clinal position. In methylcy-
clohexanes, e.g., such a change is accompanied by an up­
field shift for the methyl carbon of 5-6 ppm.16 

The temperature dependence of methyl signals in fixed 
conformations (see Figure 1 and ref 17 for axial CH3 
groups) is much smaller than the observed gradients (6eXp) 
in n-butane (Figure 2). One can thus analyze the corre­
sponding equilibrium between gauche and trans conform­
ed, characterized by an enthalpy difference AH", with 
mole fractions and (unknown) rotamer shifts ng, nt and 5g, 
5t, respectively:18 

"exp = 2flg<5g + (1 -2ng)<5 t 

n g = ( l + 2 e x p ( - A i / ° / / ? r ) ) - 1 

Compaison of experimental and calculated shifts with the 
aid of a least-squares minimization computer program fur­
nishes solutions within ±0.01 ppm standard deviation for 
300 < AH° < 700 cal/mol with 11.0 < 5g < 12.1 ppm and 
13.5 < St < 16.8 ppm (relative to Me4Si). Since the experi­
mental line is only weakly curved, the computed minima are 
rather flat, but the shift values and the enthalpy difference 
are found to be in general agreement with literature data.19 

Other linear hydrocarbons also show a temperature de­
pendence which is shielding and nonlinear for carbons af­
fected by conformational equilibria. The slope of the curves 
db/dT is approximately proportional to the number 2 7 of 
gauche conformations possible for a specific carbon atom 
(Table III). These shifts can be represented by eq 3 with 
±0.02 ppm accuracy. 

log 5 = AT~[ +B (3) 

T 

1 PPm 

TMS 

I 

9feVr^, 

^ — " • * ~ ^ 

>v O " B _ _ _ 

^ _ ^ 

t * - - ^ 

^ ^ ^ - C 9 

»-C8 

^ _ _ _ - * - C 6 

~~ " - C 5 

~~~ "Ci 

L J 

' "-C2 

200 250 300 T[1K] 

Figure 3. Temperature dependence of '3C shifts in H-pentylcyclohex-
ane. For measuring conditions, see footnotes to Table I and Experi­
mental Section. 

The use of temperature shift gradients for the assignment of 
mobile parts in a molecule which are present in mixed con­
formations is illustrated in Figure 3. In n-pentylcyclohex-
ane there are gauche rotamers only around the C2-C3 and 
C3-C4 bonds since the branching at C6 prevents the forma­
tion of other gauche conformations. Correspondingly, one 
finds upfield shifts for C l , C2, and C4, and downfield shifts 
for C6 to C9, whereas C5 and C3 exhibit the same behavior 
as the CH2 signal in n-butane. 

Experimental Section 
13CMR spectra were run in PFT mode at 21.14 kG under proton 

noise decoupling on a Bruker HX90/Nicolet 1080 system using 
8K data points at 3000-Hz spectrum width corresponding to 
±0.015 ppm digital resolution. CFCl3 (10-20%) was added as in­
ternal 19F lock, except in solvent effect studies, where C^F6 or D2O 
contained in a capillary tube was used as lock. Me4Si (2-5%) 
served as internal reference; for other conditions, see footnotes to 
tables. The temperature was controlled to ±0.5 0C by a Bruker 
BST 100/700 unit and calibrated with the aid of chemical shift 
"13CMR thermometer",4 which was again calibrated with a ther­
mocouple and the standard methanol 'H NMR temperature probe 
and showed the same temperature with and without 1H noise de­
coupling. 

2-Iodo-2,3,3-trimethylbutane. 2,3,3-Trimethyl-2-butanol (3 g, 
0.034 mol) was stirred with a fourfold excess of hydroiodic acid for 
1 h. The product was filtered, washed with water, and found to 
contain 80% iodide (by 1H NMR). The residual alcohol was re­
moved by recrystallization and sublimation; the iodide was then 
obtained in 40% yield at 98% purity (by 1H NMR): 1H NMR 
(CCl4) 1.15 (J-Bu singlet), 2.05 (/3-Me singlet). 
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Other materials were commercially available compounds and 
purified prior to use, if necessary, by destination or sublimation. 
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shorter distances if continuity of "conjugation" is broken by 
configurational or chemical (functional group) defects. The 
chain lengths of the molecules are limited only by breaks 
which represent crystal defects. These defects are responsi­
ble for a distribution of chain lengths. There can be a distri­
bution of configurations of the individual polymer mole­
cules as well, so overall we may expect that in general there 
will be many "derealization lengths" over which x-electron 
derealization is uninterrupted. 

Since the extent of x-electron derealization along the 
backbone of the linear polymer chains should affect the op­
tical properties of these materials strongly, optical absorb-
ance and Raman scattering experiments should yield infor­
mation about the distribution of x-electron derealization 
lengths in a polydiacetylene. 

In earlier Raman spectral studies of polydiacetylenes2 it 
was found that the strong Raman bands appear in the 
f ( C = C ) and y (C=C) regions and are at relatively low 
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Abstract: Polymers of the type [=C(R)—C=C—(R)C=]„, obtained by the solid-state polymerization of the corresponding 
diacetylene, have substantial x-electron derealization along the chain, forming a pseudo-one-dimensional electronic system. 
The polymer poly-ETCD, of this form, where R is - ( C H 2 ) ^ I O C O N H C 2 H S , has a nearly reversible (green-red) thermochrom­
ic phase transition in the 117-1370C range. Its Raman spectra reveal dramatic changes in the frequency and intensity of 
c(C=C) and j/(C=C) bands as a function of source frequency and of temperature, as it is raised through the transition. The 
changes result from the thermal transition and from selective resonance enhancement of vibrations for domains with whose 
electronic transitions the source is in resonance. The x-electron derealization is thus shown by resonance Raman spectrosco­
py to occur over segments, or domains, along the polymer backbone. The distribution of the "delocalization lengths" is 
peaked at three values at 25°C but at one value above the transition, for poly-ETCD samples prepared by 100 Mrad 7-ray 
irradiation. Energy level calculations are consistent with a delocalization-length distribution peaked around 3.0-8.0 nm, and 
above 20.0 nm at 250C and at about 8.0 nm above the transition. 
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